
56 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

Data Structures for Statistical Computing in Python

Wes McKinney‡∗

F

Abstract—In this paper we are concerned with the practical issues of working
with data sets common to finance, statistics, and other related fields. pandas
is a new library which aims to facilitate working with these data sets and to
provide a set of fundamental building blocks for implementing statistical models.
We will discuss specific design issues encountered in the course of developing
pandas with relevant examples and some comparisons with the R language.
We conclude by discussing possible future directions for statistical computing
and data analysis using Python.

Index Terms—data structure, statistics, R

Introduction

Python is being used increasingly in scientific applications tra-
ditionally dominated by [R], [MATLAB], [Stata], [SAS], other
commercial or open-source research environments. The maturity
and stability of the fundamental numerical libraries ([NumPy],
[SciPy], and others), quality of documentation, and availability of
"kitchen-sink" distributions ([EPD], [Pythonxy]) have gone a long
way toward making Python accessible and convenient for a broad
audience. Additionally [matplotlib] integrated with [IPython] pro-
vides an interactive research and development environment with
data visualization suitable for most users. However, adoption of
Python for applied statistical modeling has been relatively slow
compared with other areas of computational science.

A major issue for would-be statistical Python programmers in
the past has been the lack of libraries implementing standard mod-
els and a cohesive framework for specifying models. However,
in recent years there have been significant new developments in
econometrics ([StaM]), Bayesian statistics ([PyMC]), and machine
learning ([SciL]), among others fields. However, it is still difficult
for many statisticians to choose Python over R given the domain-
specific nature of the R language and breadth of well-vetted open-
source libraries available to R users ([CRAN]). In spite of this
obstacle, we believe that the Python language and the libraries
and tools currently available can be leveraged to make Python a
superior environment for data analysis and statistical computing.

In this paper we are concerned with data structures and tools
for working with data sets in-memory, as these are fundamental
building blocks for constructing statistical models. pandas is a
new Python library of data structures and statistical tools initially
developed for quantitative finance applications. Most of our ex-
amples here stem from time series and cross-sectional data arising

* Corresponding author: wesmckinn@gmail.com
‡ AQR Capital Management, LLC

Copyright © 2010 Wes McKinney. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

in financial modeling. The package’s name derives from panel
data, which is a term for 3-dimensional data sets encountered
in statistics and econometrics. We hope that pandas will help
make scientific Python a more attractive and practical statistical
computing environment for academic and industry practitioners
alike.

Statistical data sets

Statistical data sets commonly arrive in tabular format, i.e. as
a two-dimensional list of observations and names for the fields
of each observation. Usually an observation can be uniquely
identified by one or more values or labels. We show an example
data set for a pair of stocks over the course of several days. The
NumPy ndarray with structured dtype can be used to hold this
data:

>>> data
array([('GOOG', '2009-12-28', 622.87, 1697900.0),

('GOOG', '2009-12-29', 619.40, 1424800.0),
('GOOG', '2009-12-30', 622.73, 1465600.0),
('GOOG', '2009-12-31', 619.98, 1219800.0),
('AAPL', '2009-12-28', 211.61, 23003100.0),
('AAPL', '2009-12-29', 209.10, 15868400.0),
('AAPL', '2009-12-30', 211.64, 14696800.0),
('AAPL', '2009-12-31', 210.73, 12571000.0)],
dtype=[('item', '|S4'), ('date', '|S10'),

('price', '<f8'), ('volume', '<f8')])

>>> data['price']
array([622.87, 619.4, 622.73, 619.98, 211.61, 209.1,

211.64, 210.73])

Structured (or record) arrays such as this can be effective in many
applications, but in our experience they do not provide the same
level of flexibility and ease of use as other statistical environments.
One major issue is that they do not integrate well with the rest
of NumPy, which is mainly intended for working with arrays of
homogeneous dtype.

R provides the data.frame class which can similarly store
mixed-type data. The core R language and its 3rd-party libraries
were built with the data.frame object in mind, so most opera-
tions on such a data set are very natural. A data.frame is also
flexible in size, an important feature when assembling a collection
of data. The following code fragment loads the data stored in the
CSV file data into the variable df and adds a new column of
boolean values:

> df <- read.csv('data')
item date price volume

1 GOOG 2009-12-28 622.87 1697900
2 GOOG 2009-12-29 619.40 1424800
3 GOOG 2009-12-30 622.73 1465600
4 GOOG 2009-12-31 619.98 1219800
5 AAPL 2009-12-28 211.61 23003100

mailto:wesmckinn@gmail.com

DATA STRUCTURES FOR STATISTICAL COMPUTING IN PYTHON 57

6 AAPL 2009-12-29 209.10 15868400
7 AAPL 2009-12-30 211.64 14696800
8 AAPL 2009-12-31 210.73 12571000

> df$ind <- df$item == "GOOG"
> df
item date value volume ind

1 GOOG 2009-12-28 622.87 1697900 TRUE
2 GOOG 2009-12-29 619.40 1424800 TRUE
3 GOOG 2009-12-30 622.73 1465600 TRUE
4 GOOG 2009-12-31 619.98 1219800 TRUE
5 AAPL 2009-12-28 211.61 23003100 FALSE
6 AAPL 2009-12-29 209.10 15868400 FALSE
7 AAPL 2009-12-30 211.64 14696800 FALSE
8 AAPL 2009-12-31 210.73 12571000 FALSE

pandas provides a similarly-named DataFrame class which
implements much of the functionality of its R counterpart, though
with some important enhancements (namely, built-in data align-
ment) which we will discuss. Here we load the same CSV file
as above into a DataFrame object using the fromcsv function
and similarly add the above column:

>>> data = DataFrame.fromcsv('data', index_col=None)
date item value volume

0 2009-12-28 GOOG 622.9 1.698e+06
1 2009-12-29 GOOG 619.4 1.425e+06
2 2009-12-30 GOOG 622.7 1.466e+06
3 2009-12-31 GOOG 620 1.22e+06
4 2009-12-28 AAPL 211.6 2.3e+07
5 2009-12-29 AAPL 209.1 1.587e+07
6 2009-12-30 AAPL 211.6 1.47e+07
7 2009-12-31 AAPL 210.7 1.257e+07
>>> data['ind'] = data['item'] == 'GOOG'

This data can be reshaped into a different form for future examples
by means of the DataFrame method pivot:

>>> df = data.pivot('date', 'item', 'value')
>>> df

AAPL GOOG
2009-12-28 211.6 622.9
2009-12-29 209.1 619.4
2009-12-30 211.6 622.7
2009-12-31 210.7 620

Beyond observational data, one will also frequently encounter
categorical data, which can be used to partition identifiers into
broader groupings. For example, stock tickers might be catego-
rized by their industry or country of incorporation. Here we have
created a DataFrame object cats storing country and industry
classifications for a group of stocks:

>>> cats
country industry

AAPL US TECH
IBM US TECH
SAP DE TECH
GOOG US TECH
C US FIN
SCGLY FR FIN
BAR UK FIN
DB DE FIN
VW DE AUTO
RNO FR AUTO
F US AUTO
TM JP AUTO

We will use these objects above to illustrate features of interest.

pandas data model

The pandas data structures internally link the axes of a ndarray
with arrays of unique labels. These labels are stored in instances of
the Index class, which is a 1D ndarray subclass implementing

an ordered set. In the stock data above, the row labels are simply
sequential observation numbers, while the columns are the field
names.

An Index stores the labels in two ways: as a ndarray and
as a dict mapping the values (which must therefore be unique
and hashable) to the integer indices:

>>> index = Index(['a', 'b', 'c', 'd', 'e'])
>>> index
Index([a, b, c, d, e], dtype=object)
>>> index.indexMap
{'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4}

Creating this dict allows the objects to perform lookups and
determine membership in constant time.

>>> 'a' in index
True

These labels are used to provide alignment when performing
data manipulations using differently-labeled objects. There are
specialized data structures, representing 1-, 2-, and 3-dimensional
data, which incorporate useful data handling semantics to facili-
tate both interactive research and system building. A general n-
dimensional data structure would be useful in some cases, but
data sets of dimension higher than 3 are very uncommon in most
statistical and econometric applications, with 2-dimensional being
the most prevalent. We took a pragmatic approach, driven by
application needs, to designing the data structures in order to
make them as easy-to-use as possible. Also, we wanted the objects
to be idiomatically similar to those present in other statistical
environments, such as R.

Data alignment

Operations between related, but differently-sized data sets can
pose a problem as the user must first ensure that the data points
are properly aligned. As an example, consider time series over
different date ranges or economic data series over varying sets of
entities:

>>> s1 >>> s2
AAPL 0.044 AAPL 0.025
IBM 0.050 BAR 0.158
SAP 0.101 C 0.028
GOOG 0.113 DB 0.087
C 0.138 F 0.004
SCGLY 0.037 GOOG 0.154
BAR 0.200 IBM 0.034
DB 0.281
VW 0.040

One might choose to explicitly align (or reindex) one of these
1D Series objects with the other before adding them, using the
reindex method:

>>> s1.reindex(s2.index)
AAPL 0.0440877763224
BAR 0.199741007422
C 0.137747485628
DB 0.281070058049
F NaN
GOOG 0.112861123629
IBM 0.0496445829129

However, we often find it preferable to simply ignore the state of
data alignment:

>>> s1 + s2
AAPL 0.0686791008184
BAR 0.358165479807
C 0.16586702944

58 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

DB 0.367679872693
F NaN
GOOG 0.26666583847
IBM 0.0833057542385
SAP NaN
SCGLY NaN
VW NaN

Here, the data have been automatically aligned based on their
labels and added together. The result object contains the union
of the labels between the two objects so that no information is
lost. We will discuss the use of NaN (Not a Number) to represent
missing data in the next section.

Clearly, the user pays linear overhead whenever automatic data
alignment occurs and we seek to minimize that overhead to the
extent possible. Reindexing can be avoided when Index objects
are shared, which can be an effective strategy in performance-
sensitive applications. [Cython], a widely-used tool for easily
creating Python C extensions, has been utilized to speed up these
core algorithms.

Handling missing data

It is common for a data set to have missing observations. For
example, a group of related economic time series stored in a
DataFrame may start on different dates. Carrying out calcula-
tions in the presence of missing data can lead both to complicated
code and considerable performance loss. We chose to use NaN as
opposed to using NumPy MaskedArrays for performance reasons
(which are beyond the scope of this paper), as NaN propagates
in floating-point operations in a natural way and can be easily
detected in algorithms. While this leads to good performance, it
comes with drawbacks: namely that NaN cannot be used in integer-
type arrays, and it is not an intuitive "null" value in object or string
arrays.

We regard the use of NaN as an implementation detail and
attempt to provide the user with appropriate API functions for
performing common operations on missing data points. From the
above example, we can use the valid method to drop missing
data, or we could use fillna to replace missing data with a
specific value:

>>> (s1 + s2).valid()
AAPL 0.0686791008184
BAR 0.358165479807
C 0.16586702944
DB 0.367679872693
GOOG 0.26666583847
IBM 0.0833057542385

>>> (s1 + s2).fillna(0)
AAPL 0.0686791008184
BAR 0.358165479807
C 0.16586702944
DB 0.367679872693
F 0.0
GOOG 0.26666583847
IBM 0.0833057542385
SAP 0.0
SCGLY 0.0
VW 0.0

Common ndarray methods have been rewritten to automatically
exclude missing data from calculations:

>>> (s1 + s2).sum()
1.3103630754662747

>>> (s1 + s2).count()
6

Similar to R’s is.na function, which detects NA (Not Available)
values, pandas has special API functions isnull and notnull
for determining the validity of a data point. These contrast with
numpy.isnan in that they can be used with dtypes other
than float and also detect some other markers for "missing"
occurring in the wild, such as the Python None value.

>>> isnull(s1 + s2)
AAPL False
BAR False
C False
DB False
F True
GOOG False
IBM False
SAP True
SCGLY True
VW True

Note that R’s NA value is distinct from NaN. While the addition
of a special NA value to NumPy would be useful, it is most likely
too domain-specific to merit inclusion.

Combining or joining data sets

Combining, joining, or merging related data sets is a quite
common operation. In doing so we are interested in associating
observations from one data set with another via a merge key of
some kind. For similarly-indexed 2D data, the row labels serve as
a natural key for the join function:

>>> df1 >>> df2
AAPL GOOG MSFT YHOO

2009-12-24 209 618.5 2009-12-24 31 16.72
2009-12-28 211.6 622.9 2009-12-28 31.17 16.88
2009-12-29 209.1 619.4 2009-12-29 31.39 16.92
2009-12-30 211.6 622.7 2009-12-30 30.96 16.98
2009-12-31 210.7 620

>>> df1.join(df2)
AAPL GOOG MSFT YHOO

2009-12-24 209 618.5 31 16.72
2009-12-28 211.6 622.9 31.17 16.88
2009-12-29 209.1 619.4 31.39 16.92
2009-12-30 211.6 622.7 30.96 16.98
2009-12-31 210.7 620 NaN NaN

One might be interested in joining on something other than the
index as well, such as the categorical data we presented in an
earlier section:

>>> data.join(cats, on='item')
country date industry item value

0 US 2009-12-28 TECH GOOG 622.9
1 US 2009-12-29 TECH GOOG 619.4
2 US 2009-12-30 TECH GOOG 622.7
3 US 2009-12-31 TECH GOOG 620
4 US 2009-12-28 TECH AAPL 211.6
5 US 2009-12-29 TECH AAPL 209.1
6 US 2009-12-30 TECH AAPL 211.6
7 US 2009-12-31 TECH AAPL 210.7

This is akin to a SQL join operation between two tables.

Categorical variables and "Group by" operations

One might want to perform an operation (for example, an aggrega-
tion) on a subset of a data set determined by a categorical variable.
For example, suppose we wished to compute the mean value by
industry for a set of stock data:

>>> s >>> ind
AAPL 0.044 AAPL TECH
IBM 0.050 IBM TECH

DATA STRUCTURES FOR STATISTICAL COMPUTING IN PYTHON 59

SAP 0.101 SAP TECH
GOOG 0.113 GOOG TECH
C 0.138 C FIN
SCGLY 0.037 SCGLY FIN
BAR 0.200 BAR FIN
DB 0.281 DB FIN
VW 0.040 VW AUTO

RNO AUTO
F AUTO
TM AUTO

This concept of "group by" is a built-in feature of many data-
oriented languages, such as R and SQL. In R, any vector of non-
numeric data can be used as an input to a grouping function such
as tapply:

> labels
[1] GOOG GOOG GOOG GOOG AAPL AAPL AAPL AAPL
Levels: AAPL GOOG
> data
[1] 622.87 619.40 622.73 619.98 211.61 209.10
211.64 210.73

> tapply(data, labels, mean)
AAPL GOOG

210.770 621.245

pandas allows you to do this in a similar fashion:

>>> data.groupby(labels).aggregate(np.mean)
AAPL 210.77
GOOG 621.245

One can use groupby to concisely express operations on rela-
tional data, such as counting group sizes:

>>> s.groupby(ind).aggregate(len)
AUTO 1
FIN 4
TECH 4

In the most general case, groupby uses a function or mapping
to produce groupings from one of the axes of a pandas object. By
returning a GroupBy object we can support more operations than
just aggregation. Here we can subtract industry means from a data
set:

demean = lambda x: x - x.mean()

def group_demean(obj, keyfunc):
grouped = obj.groupby(keyfunc)
return grouped.transform(demean)

>>> group_demean(s1, ind)
AAPL -0.0328370881632
BAR 0.0358663891836
C -0.0261271326111
DB 0.11719543981
GOOG 0.035936259143
IBM -0.0272802815728
SAP 0.024181110593
SCGLY -0.126934696382
VW 0.0

Manipulating panel (3D) data

A data set about a set of individuals or entities over a time range
is commonly referred to as panel data; i.e., for each entity over a
date range we observe a set of variables. Such data can be found
both in balanced form (same number of time observations for each
individual) or unbalanced (different numbers of observations).
Panel data manipulations are important for constructing inputs to
statistical estimation routines, such as linear regression. Consider
the Grunfeld data set [Grun] frequently used in econometrics
(sorted by year):

>>> grunfeld
capita firm inv value year

0 2.8 1 317.6 3078 1935
20 53.8 2 209.9 1362 1935
40 97.8 3 33.1 1171 1935
60 10.5 4 40.29 417.5 1935
80 183.2 5 39.68 157.7 1935
100 6.5 6 20.36 197 1935
120 100.2 7 24.43 138 1935
140 1.8 8 12.93 191.5 1935
160 162 9 26.63 290.6 1935
180 4.5 10 2.54 70.91 1935
1 52.6 1 391.8 4662 1936
21 50.5 2 355.3 1807 1936
41 104.4 3 45 2016 1936
61 10.2 4 72.76 837.8 1936
81 204 5 50.73 167.9 1936
101 15.8 6 25.98 210.3 1936
121 125 7 23.21 200.1 1936
141 0.8 8 25.9 516 1936
161 174 9 23.39 291.1 1936
181 4.71 10 2 87.94 1936
...

Really this data is 3-dimensional, with firm, year, and item (data
field name) being the three unique keys identifying a data point.
Panel data presented in tabular format is often referred to as the
stacked or long format. We refer to the truly 3-dimensional form
as the wide form. pandas provides classes for operating on both:

>>> lp = LongPanel.fromRecords(grunfeld, 'year',
'firm')

>>> wp = lp.toWide()
>>> wp
<class 'pandas.core.panel.WidePanel'>
Dimensions: 3 (items) x 20 (major) x 10 (minor)
Items: capital to value
Major axis: 1935 to 1954
Minor axis: 1 to 10

Now with the data in 3-dimensional form, we can examine the
data items separately or compute descriptive statistics more easily
(here the head function just displays the first 10 rows of the
DataFrame for the capital item):

>>> wp['capital'].head()
1935 1936 1937 1938 1939

1 2.8 265 53.8 213.8 97.8
2 52.6 402.2 50.5 132.6 104.4
3 156.9 761.5 118.1 264.8 118
4 209.2 922.4 260.2 306.9 156.2
5 203.4 1020 312.7 351.1 172.6
6 207.2 1099 254.2 357.8 186.6
7 255.2 1208 261.4 342.1 220.9
8 303.7 1430 298.7 444.2 287.8
9 264.1 1777 301.8 623.6 319.9
10 201.6 2226 279.1 669.7 321.3

In this form, computing summary statistics, such as the time series
mean for each (item, firm) pair, can be easily carried out:

>>> wp.mean(axis='major')
capital inv value

1 140.8 98.45 923.8
2 153.9 131.5 1142
3 205.4 134.8 1140
4 244.2 115.8 872.1
5 269.9 109.9 998.9
6 281.7 132.2 1056
7 301.7 169.7 1148
8 344.8 173.3 1068
9 389.2 196.7 1236
10 428.5 197.4 1233

As an example application of these panel data structures, consider
constructing dummy variables (columns of 1’s and 0’s identifying

60 PROC. OF THE 9th PYTHON IN SCIENCE CONF. (SCIPY 2010)

dates or entities) for linear regressions. Especially for unbalanced
panel data, this can be a difficult task. Since we have all of the
necessary labeling data here, we can easily implement such an
operation as an instance method.

Implementing statistical models

When applying a statistical model, data preparation and cleaning
can be one of the most tedious or time consuming tasks. Ideally
the majority of this work would be taken care of by the model
class itself. In R, while NA data can be automatically excluded
from a linear regression, one must either align the data and put
it into a data.frame or otherwise prepare a collection of 1D
arrays which are all the same length.

Using pandas, the user can avoid much of this data preparation
work. As a exemplary model leveraging the pandas data model,
we implemented ordinary least squares regression in both the
standard case (making no assumptions about the content of the
regressors) and the panel case, which has additional options to
allow for entity and time dummy variables. Facing the user is a
single function, ols, which infers the type of model to estimate
based on the inputs:

>>> model = ols(y=Y, x=X)
>>> model.beta
AAPL 0.187984100742
GOOG 0.264882582521
MSFT 0.207564901899
intercept -0.000896535166817

If the response variable Y is a DataFrame (2D) or dict of 1D
Series, a panel regression will be run on stacked (pooled) data.
The x would then need to be either a WidePanel, LongPanel,
or a dict of DataFrame objects. Since these objects contain all
of the necessary information to construct the design matrices for
the regression, there is nothing for the user to worry about (except
the formulation of the model).

The ols function is also capable of estimating a moving
window linear regression for time series data. This can be useful
for estimating statistical relationships that change through time:

>>> model = ols(y=Y, x=X, window_type='rolling',
window=250)

>>> model.beta
<class 'pandas.core.matrix.DataFrame'<>
Index: 1103 entries , 2005-08-16 to 2009-12-31
Data columns:
AAPL 1103 non-null values
GOOG 1103 non-null values
MSFT 1103 non-null values
intercept 1103 non-null values
dtype: float64(4)

Here we have estimated a moving window regression with a win-
dow size of 250 time periods. The resulting regression coefficients
stored in model.beta are now a DataFrame of time series.

Date/time handling

In applications involving time series data, manipulations on dates
and times can be quite tedious and inefficient. Tools for working
with dates in MATLAB, R, and many other languages are clumsy
or underdeveloped. Since Python has a built-in datetime type
easily accessible at both the Python and C / Cython level, we aim
to craft easy-to-use and efficient date and time functionality. When
the NumPy datetime64 dtype has matured, we will, of course,
reevaluate our date handling strategy where appropriate.

For a number of years scikits.timeseries [SciTS] has been
available to scientific Python users. It is built on top of MaskedAr-
ray and is intended for fixed-frequency time series. While forcing
data to be fixed frequency can enable better performance in some
areas, in general we have found that criterion to be quite rigid in
practice. The user of scikits.timeseries must also explicitly align
data; operations involving unaligned data yield unintuitive results.

In designing pandas we hoped to make working with time
series data intuitive without adding too much overhead to the
underlying data model. The pandas data structures are datetime-
aware but make no assumptions about the dates. Instead, when
frequency or regularity matters, the user has the ability to generate
date ranges or conform a set of time series to a particular
frequency. To do this, we have the DateRange class (which is
also a subclass of Index, so no conversion is necessary) and the
DateOffset class, whose subclasses implement various general
purpose and domain-specific time increments. Here we generate a
date range between 1/1/2000 and 1/1/2010 at the "business month
end" frequency BMonthEnd:

>>> DateRange('1/1/2000', '1/1/2010',
offset=BMonthEnd())

<class 'pandas.core.daterange.DateRange'>
offset: <1 BusinessMonthEnd>
[2000-01-31 00:00:00, ..., 2009-12-31 00:00:00]
length: 120

A DateOffset instance can be used to convert an object
containing time series data, such as a DataFrame as in our earlier
example, to a different frequency using the asfreq function:

>>> monthly = df.asfreq(BMonthEnd())
AAPL GOOG MSFT YHOO

2009-08-31 168.2 461.7 24.54 14.61
2009-09-30 185.3 495.9 25.61 17.81
2009-10-30 188.5 536.1 27.61 15.9
2009-11-30 199.9 583 29.41 14.97
2009-12-31 210.7 620 30.48 16.78

Some things which are not easily accomplished in scik-
its.timeseries can be done using the DateOffset model, like
deriving custom offsets on the fly or shifting monthly data forward
by a number of business days using the shift function:

>>> offset = Minute(12)
>>> DateRange('6/18/2010 8:00:00',

'6/18/2010 12:00:00',
offset=offset)

<class 'pandas.core.daterange.DateRange'>
offset: <12 Minutes>
[2010-06-18 08:00:00, ..., 2010-06-18 12:00:00]
length: 21

>>> monthly.shift(5, offset=Bay())
AAPL GOOG MSFT YHOO

2009-09-07 168.2 461.7 24.54 14.61
2009-10-07 185.3 495.9 25.61 17.81
2009-11-06 188.5 536.1 27.61 15.9
2009-12-07 199.9 583 29.41 14.97
2010-01-07 210.7 620 30.48 16.78

Since pandas uses the built-in Python datetime object, one
could foresee performance issues with very large or high fre-
quency time series data sets. For most general applications finan-
cial or econometric applications we cannot justify complicating
datetime handling in order to solve these issues; specialized
tools will need to be created in such cases. This may be indeed be
a fruitful avenue for future development work.

DATA STRUCTURES FOR STATISTICAL COMPUTING IN PYTHON 61

Related packages

A number of other Python packages have appeared recently which
provide some similar functionality to pandas. Among these, la
([Larry]) is the most similar, as it implements a labeled ndarray
object intending to closely mimic NumPy arrays. This stands
in contrast to our approach, which is driven by the practical
considerations of time series and cross-sectional data found in
finance, econometrics, and statistics. The references include a
couple other packages of interest ([Tab], [pydataframe]).

While pandas provides some useful linear regression models,
it is not intended to be comprehensive. We plan to work closely
with the developers of scikits.statsmodels ([StaM]) to generally
improve the cohesiveness of statistical modeling tools in Python.
It is likely that pandas will soon become a "lite" dependency of
scikits.statsmodels; the eventual creation of a superpackage for
statistical modeling including pandas, scikits.statsmodels, and
some other libraries is also not out of the question.

Conclusions

We believe that in the coming years there will be great oppor-
tunity to attract users in need of statistical data analysis tools
to Python who might have previously chosen R, MATLAB, or
another research environment. By designing robust, easy-to-use
data structures that cohere with the rest of the scientific Python
stack, we can make Python a compelling choice for data analysis
applications. In our opinion, pandas represents a solid step in the
right direction.

REFERENCES

[pandas] W. McKinney, AQR Capital Management, pandas: a python
data analysis library, http://pandas.sourceforge.net

[Larry] K. Goodman. la / larry: ndarray with labeled axes, http://larry.
sourceforge.net/

[SciTS] M. Knox, P. Gerard-Marchant, scikits.timeseries: python time
series analysis, http://pytseries.sourceforge.net/

[StaM] S. Seabold, J. Perktold, J. Taylor, scikits.statsmodels: statistical
modeling in Python, http://statsmodels.sourceforge.net

[SciL] D. Cournapeau, et al., scikits.learn: machine learning in
Python, http://scikit-learn.sourceforge.net

[PyMC] C. Fonnesbeck, A. Patil, D. Huard, PyMC: Markov Chain
Monte Carlo for Python, http://code.google.com/p/pymc/

[Tab] D. Yamins, E. Angelino, tabular: tabarray data structure for
2D data, http://parsemydata.com/tabular/

[NumPy] T. Oliphant, http://numpy.scipy.org
[SciPy] E. Jones, T. Oliphant, P. Peterson, http://scipy.org
[matplotlib] J. Hunter, et al., matplotlib: Python plotting, http://matplotlib.

sourceforge.net/
[EPD] Enthought, Inc., EPD: Enthought Python Distribution, http://

www.enthought.com/products/epd.php
[Pythonxy] P. Raybaut, Python(x,y): Scientific-oriented Python distribu-

tion, http://www.pythonxy.com/
[CRAN] The R Project for Statistical Computing, http://cran.r-project.

org/
[Cython] G. Ewing, R. W. Bradshaw, S. Behnel, D. S. Seljebotn, et al.,

The Cython compiler, http://cython.org
[IPython] F. Perez, et al., IPython: an interactive computing environment,

http://ipython.scipy.org
[Grun] Batalgi, Grunfeld data set, http://www.wiley.com/legacy/

wileychi/baltagi/
[nipy] J. Taylor, F. Perez, et al., nipy: Neuroimaging in Python, http:

//nipy.sourceforge.net
[pydataframe] A. Straw, F. Finkernagel, pydataframe, http://code.google.com/

p/pydataframe/
[R] R Development Core Team. 2010, R: A Language and Envi-

ronment for Statistical Computing, http://www.R-project.org
[MATLAB] The MathWorks Inc. 2010, MATLAB, http://www.mathworks.

com

[Stata] StatCorp. 2010, Stata Statistical Software: Release 11 http://
www.stata.com

[SAS] SAS Institute Inc., SAS System, http://www.sas.com

http://pandas.sourceforge.net
http://larry.sourceforge.net/
http://larry.sourceforge.net/
http://pytseries.sourceforge.net/
http://statsmodels.sourceforge.net
http://scikit-learn.sourceforge.net
http://code.google.com/p/pymc/
http://parsemydata.com/tabular/
http://numpy.scipy.org
http://scipy.org
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
http://www.enthought.com/products/epd.php
http://www.enthought.com/products/epd.php
http://www.pythonxy.com/
http://cran.r-project.org/
http://cran.r-project.org/
http://cython.org
http://ipython.scipy.org
http://www.wiley.com/legacy/wileychi/baltagi/
http://www.wiley.com/legacy/wileychi/baltagi/
http://nipy.sourceforge.net
http://nipy.sourceforge.net
http://code.google.com/p/pydataframe/
http://code.google.com/p/pydataframe/
http://www.R-project.org
http://www.mathworks.com
http://www.mathworks.com
http://www.stata.com
http://www.stata.com
http://www.sas.com

	Introduction
	Statistical data sets
	pandas data model
	Data alignment
	Handling missing data
	Combining or joining data sets
	Categorical variables and "Group by" operations
	Manipulating panel (3D) data
	Implementing statistical models
	Date/time handling
	Related packages
	Conclusions
	References

